
The technical side of selling
your classes and apps
made with Real Studio

As presented at the Real Studio Conference
on May 22, 2011 in Essen, Germany

Copyright 2011 Thomas Tempelmann

1

What this session covers
• Selling your code as encrypted classes
– Understanding REAL Studioʼs encryption
– Providing a clean API to your users

• Selling your applications
– Preventing unauthorized use of your app
– Using AquaticPrime for licensing
– Payment processing
– Enforcing the license
– License installation
– Foiling attempts to circumvent the license enforcement
– Update mechanisms for your app

2

Selling your code as
encrypted classes

The technical side

3

How safe is RSʼ "encryption?
• The compiler must be able to decrypt it without knowing
the password, which means that a good cracker can get
to the encrypted source code.

• No public cracking tools known.
• If you are really worried about exposing your code,
consider writing your code in C, then create a library or
plugin from it.

4

Caveats with encypted classes
• While the compiler can read the source code, the IDE
wonʼt show it to you when it reports a compile error.
– If your code uses code that is not compilable with earlier

or later REAL Studio versions, the user canʼt really tell
whatʼs going on.

– Similarly, if your code conflicts with the userʼs code,
causing a name conflict, the user wonʼt get to see which
name causes it.

• If there is an exception in the encrypted code, the
debugger will show misleading information, making it
difficult for the user to figure out that the problem is
within the encrypted code and not in his own.

• The user can not even see the functions the classes are
making available, meaning he has to rely on your
documentation.

5

Best practises encrypting classes"
• Consider giving the paying customer the decryption
password so that he can avoid all of the aforementioned
caveats.

• In any case, create a two-layer API:
– 1. Put all your secret code into a private class, with no

public but only protected and private members. Encrypt
this class.

– 2. Create a subclass of the encrypted class. This one shall
only contain the exposed API, i.e. the functions the user
can call, which in turn call the protected functions of the
encrypted class. That way, the user can look at the
method declarations of your class, even use code
completion. This automatically makes your API self-
documenting, too.

– As an example, see my Zip classes at
http://www.tempel.org/RB/ZipPackage

6

http://www.tempel.org/RB/ZipPackage
http://www.tempel.org/RB/ZipPackage

Best practises encrypting classes"

7

Selling your applications
The technical side

8

The basics of selling an application
• To raise interest in your customer to buy your app, you
have to offer a demo or a good promise that the user will
be satisfied if he purchases it.

• If the customer wants to buy it, you need to be able to
take his money. Usually this means that you will need a
payment processor to handle the financial transaction.

• Lastly, the customer needs to get the product he paid for.
Two ways:
– The full-featured App is separate from the Demo version

and is available only to paying customers, as a “secret”
download that no one else gets to.

– Alternatively, your App has two modes: A demo and a
licensed mode. Meaning the user has to let the app know
that he has purchased the right to the product features.

9

Payment processors
• All processors want a share of your sales. Hereʼs a few
popular ones I had a look at:

• Paypal
– Lowest fees of all if you use just the simple “Pay now”

buttons. No invoicing, limited post-processing.
• Kagi
– Oldest processor. Has gotten a bit behind. Solid.

• eSellerate
– Has processing plugin for REALbasic, though a bit

outdated.
• FastSpring
– Seems to be the youngest and freshest of them. Easy-to-

use store setup.
• Appleʼs App Store. Expensive. Best exposure.

10

Using a licensing key scheme
• Having separate demo and full-featured apps is an
option that I wonʼt go into further here, as it is rather
straight-forward from a technical standpoint.

• Here, I will show how to handle license keys, enabling
features in a single application that can run as a demo if
no key is added.

• A license key may be made up of a small set of character
that the user has to enter, or be delivered as a file that
the user has to then made known to the application.

11

Properties of a license key
• A key may contain the following information:
– The buyerʼs name, company and/or e-mail address. If this

appears in clear text either in the license file directly or is
shown by the application, this might act as a deterrent for
the person to freely share the key with others when heʼs
not supposed to.
(Consider the possibility that the key gets stolen from the
customer without his knowledge. I suggest that you let the
customer know in advance that his name will be on the license
when they make the purchase.)

– A code to unlock all or a set of features of the app.
– A purchase date.
– An expiration date.
– A signature that proves that this license is valid.

12

The meaning of the license signature
• It is necesary to ensure that no one can generate their
own license, enabling all features, without paying for
them, of course.

• There are two ways to do this:
– Either the entire license data gets encrypted in a way that

is only known to you as the license generator, and to your
program verifying it. REAL Studio does this, for instance.

– Or the plainly visible data gets just signed with a digital
signature, using public-key cryptography.

• This latter option, using a signature, based on an
asymmetric key, is safer than the first option in the way
that it canʼt reveal to a cracker how to recreate a fake but
valid license.

13

How asymmetric encryption works
• You, the publisher, keep a secret code, the “private key”,
to create the signature. You will keep this key to yourself.

• The application contains another code, the “public key”,
which it will use to check if the signature matches the
data it has signed.

14

How asymmetric encryption works
• If someone wanted to create a fake license for your app,
he would need to know how to sign the license so that
the app validates it.
– But for that to work, heʼd have to know the “private key”,

which you keep secret and which wonʼt appear in the
application.

– Therefore, as long as your own computers do not get
comprimised, this is a pretty safe method.

• Of course, the cracker can modify your code to accept
even a bad signature, but he canʼt produce new licenses
to take over or damage your business that way.

15

The AquaticPrime license system
• AquaticPrime (AQ) is an open source implementation for
generating, managing and testing digitally signed license
key files.

• AQ comes with an application to create the public and
private keys for a product, along with creating and
archiving invidual license keys per purchase.

• This application is currently Mac-only, but there are also
solutions for Windows and even PHP and Python, even
though not as comfortable to use (yet).

• The other half of AQ is the code that validates a license.
This is available for many languages, including
REALbasic, both for OS X and Windows applications.

16

Generating the licenses
• While AQ offers ways to generate license files for your
customers, there is an even easier way:

• Some payment processors offer AQ license generation
on their servers, saving you from the need of setting up
your own server to provide the licenses.

• Of all the ones I looked at, FastSpring offered the most
flexible way to generate licenses, letting me add name,
company, e-mail, purchase date and even a free form
value per product. All I need to do is upload the once-
generated private and public keys, and the service takes
care of the rest.

• eSellerate offers a similar AQ generation service, but I
didnʼt follow through with it as it seemed less capable.

• Kagi announced AQ support, too, but wasnʼt ready yet.

17

Getting your app to accept a license
• Assuming you deliver a license key to the customer after
his purchase, the customer needs to “enter” it into the
application. In case of AQ files, the best way is to let the
app open the file and then copy its data to a safe place.

• I recommend to use a dedicated file extension for your
license files so that the user can simply double click the
file, which will then launch your application so that it can
process it. It can be long, e.g. “.programname-license”.

• Registering a file extension on both OSX and Windows is
challenging since REAL Studio doesnʼt automate this yet,
even though it supposedly does.

• First off, you need to add a FileType to the project,
setting an icon, the extension and a UTI
(com.yourdomain.appname.license).

18

Registering an extension on OS X
• For OS X to recognize the file extension mapping for
your application, you need to add some data to the
Info.plist file until REAL Studio does this on its own
(<feedback://showreport?report_id=15933>).

• To add the information, first use a text editor to add it
directly to a built version of your appʼs Info.plist.

• To test if your modification to Info.plist worked, use my
free tool “Launch Services”: Drop your modified app onto
the tool (this updates the LS database), then enter your
extension into the lower field and click “Find App”. If this
reveals your app, youʼre set.

• Once it works, you can use /usr/libexec/PlistBuddy
(installed with Xcode) to add the data automatically, e.g.
by using IDE Scripting or Build Automation.

19

feedback://showreport?report_id=15933
feedback://showreport?report_id=15933

Registering an extension on OS X
<key>UTExportedTypeDeclarations</key>
	 <array>
	 	 <dict>
	 	 	 <key>UTTypeConformsTo</key>
	 	 	 <array>
	 	 	 	 <string>public.data</string>
	 	 	 </array>
	 	 	 <key>UTTypeIdentifier</key>
	 	 	 <string>com.yourdomain.appname.licensefile</string>
	 	 	 <key>UTTypeTagSpecification</key>
	 	 	 <dict>
	 	 	 	 <key>public.filename-extension</key>
	 	 	 	 <array>
	 	 	 	 	 <string>the-extension-name</string>
	 	 	 	 </array>
	 	 	 </dict>
	 	 </dict>
	 </array>

20

Associate an extension on Windows
• On Windows, you either need to use an Installer that
sets up the file extension mapping or your can do this in
your own app - which requires that the user runs your
app once before trying to double click the license file,
though.

• To associate the file extension, you have to add it to the
Registry. To get this right for both Windows XP and
Windows 7, I suggest to try to add it first under
HKEY_CLASSES_ROOT, and if that fails (which is likely
on Win7), under HKEY_CURRENT_USER/SOFTWARE/
Classes.

• Sample code for this is a bit long, download link to follow
at end of session.

21

Accepting the license in your app
• Once your app can open the license file (make sure the
user can also simply drop the file onto the app, or even
use the File -> Open menu command for this), it should
be validated and copied to a safe place.

• Validation is handled on the upcoming slides.
• After validation, I recommend copying the license file to a
folder that is owned by the user. For example, get the
folder for application data by calling
SpecialFolder.ApplicationData, then create a folder
named after your application in it, and use that as the
location for the license and other data the app wants to
store. I.e. do not place such files into the Documents
folder where only files the user explicitly handles are
supposed to be stored.

• When your app starts, look for the license there to
validate it.

22

Validating the license
• The AquaticPrime class has an easy-to-use API:
– Create a new AQ instance by passing the public key to it.
– If you have any blacklisted keys, you can supply them via

its the AddToBlacklist method.
– Then call its DictionaryForLicenseFile function, passing it

the FolderItem reference of the license file.
– If the license is valid, the function returns a dictionary

containing all the values from the license file, minus the
signature. You can then read the customerʼs name and/or
e-mail address to show that in a window as necessary,
and read the purchase date and other data from it as you
see fit.

– If the function returns nil, it means that the license is not
valid and the app can enter demo mode or tell the user
that the license he has installed is not valid.

23

Blacklisting
• Individual licenses may still get compromised:
– Someone could deliberately make a purchase under a

false identity and then spread the license, not caring about
detection.

– A honest customer could get his license stolen and
abused.

• In these cases, you actively need to block these licenses
from being accepted by your app. Your options:
– Add these license keys to your new releases of your

software, passing them as Blacklisted to the AquaticPrime
class when validating a license so that they get rejected.

– Consider letting your app “call home”, getting the blacklist
regularly form your server, so that even current versions of
your app will learn about compromised keys and stop
accepting them.

24

Security measures against cracking
• While thereʼs little chance someone can create fake
licenses that your app would accept, itʼs rather easy for a
skilled programmer to patch your application so that it
will accept any license as valid. A few scenarios:
– Since the license data is not hidden, all he has to do is

find the code that checks if the signature is valid, and get
that result ignored, returning always the dictionary with the
values from the license.

– If he finds your hard coded blacklist, he can erase the
blacklist without even having to have programming skills if
the blacklisted keys are found by a search with a hex
editor.

– Similarly, if your public key is easily found, it can be
replaced by his own key so that he can then create valid
licenses for this patched version of your app.

25

Security measures (cont.)
• Fact: You can not prevent a good and dedicated cracker
from disabling your license checks.

• You can, however, make this not too easy for the casual
cracker. And if youʼre lucky, he gives up as soon as he
sees youʼre not making the simplest mistakes, and so he
has no idea how sophisticated itʼll get and how much
time he may have to waste on it, with the possibility to
not even ever succeed because itʼs above his skills.

• Do not be tempted to tease the cracker should you
discover that heʼs patching your code. That will only
tackle his pride, making it less likely that he gives up.

• Be subtle. Add code that detects modification to your app
and then destroy small but important things in the app so
that the app does react only later to the crack,
misguiding the cracker and frustrating him.

26

Security measures (cont.)
• Here are a few ideas:
– Do not store the blacklist nor the public key in their original

value. Make an effort to obscure and fragment them so
that a simple replace of the entire key is not possible.

– Invoke the AquaticPrime class with different licenses that
you know to be both valid and invalid, and test if they turn
out that way. If a cracker just changes the code so that it
always tests positive, a false test will reveal his hack. You
can even go so far as to use another public key to see
how that behaves.

– Basically, always perform multiple tests, both positive and
negative, from different places in your code.

– If you detect that something is wrong, change the state of
your app, possibly something that will soon lead to crash
or lock it up.

27

Further considerations
• Consider that some markets require localization, e.g.
Japan. German, French, Spanish markets also expect
translated applications.

• For Mac OS X, the App Store may be a good deal
despite its high fees. The upside is that is give an app
good exposure and that Apple takes care of the financial
and licensing tasks. All you need to do is some code to
validate the license, which can be found in the CertTools
module of the open source MacOSLib.

• Your application should have a way to tell the user if an
update is available. Consider Sparkle, with good support
for OS X and basic support for Windows and Linux.
Thereʼs also the MBS Update Kit, which offers a more
complete solution for Windows including installer
invocation.

28

References

http://www.tempel.org/RB/Realcon2011
– AquaticPrime: http://github.com/bdrister/AquaticPrime
– “Launch Services” tool (with source code):

 http://files.tempel.org/RB/LaunchServices.rbp.zip
– Windows code to associate a file extension:

 http://files.tempel.org/RB/WindowsOS.rbbas.zip
– Localization: http://www.tempel.org/RB/Localization
– Mac App Store: http://www.tempel.org/RB/AppStoreGuide
– Updaters:

– Sparkle:
 http://www.declaresub.com/article/67/sparkle-for-realbasic

– RBSparkle: http://www.tempel.org/RB/Sparkle
– MBS Kit:

 http://www.monkeybreadsoftware.de/realbasic/UpdaterKit/

29

http://www.tempel.org/RB/Realcon2011
http://www.tempel.org/RB/Realcon2011
http://github.com/bdrister/AquaticPrime
http://github.com/bdrister/AquaticPrime
http://files.tempel.org/RB/LaunchServices.rbp.zip
http://files.tempel.org/RB/LaunchServices.rbp.zip
http://files.tempel.org/RB/WindowsOS.rbbas.zip
http://files.tempel.org/RB/WindowsOS.rbbas.zip
http://www.tempel.org/RB/Localization
http://www.tempel.org/RB/Localization
http://www.tempel.org/RB/AppStoreGuide
http://www.tempel.org/RB/AppStoreGuide
http://www.declaresub.com/article/67/sparkle-for-realbasic
http://www.declaresub.com/article/67/sparkle-for-realbasic
http://www.tempel.org/RB/Sparkle
http://www.tempel.org/RB/Sparkle
http://www.monkeybreadsoftware.de/realbasic/UpdaterKit/
http://www.monkeybreadsoftware.de/realbasic/UpdaterKit/

The END

Thomas Tempelmann
tempelmann@gmail.com

Twitter: tempelorg
http://www.tempel.org/RB

More up-to-date (Sep 2011) info here:
http://www.tempel.org/UsingAquaticPrime

30

mailto:tempelmann@gmail.com?subject=Selling%20Your%20Work%20PDF
mailto:tempelmann@gmail.com?subject=Selling%20Your%20Work%20PDF
https://twitter.com/%23!/tempelorg
https://twitter.com/%23!/tempelorg
http://www.tempel.org/RB
http://www.tempel.org/RB
http://www.tempel.org/UsingAquaticPrime
http://www.tempel.org/UsingAquaticPrime

