Using external C code
with pre-emptive
multi-tasking in Xojo
Thomas Tempelmann

MBS Xojo Conference, Munich
September 7, 2018



Challenges

e Xojo cannot run code in multiple threads concurrently, due to lack

of securing the lowest data structures (Objects, includings Strings
and Arrays) accordingly.

* Any parallel processing (on multiple CPU Cores) must be
performed outside Xojo code, e.qg. in a library written in C.



Binding with the C code

e On macOS, create a dylib; on Windows a DLL
e The lib exports static C functions
e Add the lib file to the built app using Build Automation

* Link to the functions from Xojo with declares



Threads and Tasks

The C code sets up a number of pthreads (POSIX Threads)

Xojo creates Tasks, which are described in Structures. These get
passed to the C code, which adds them to a queue (list).

Each running Thread waits for Tasks to arrive, and processes one
of them at a time.

Once a task has been handled by a thread, it sets a flag, which the
Xojo code polls via a Timer or in a Xojo Thread.



Task data structure

e Example: Pass data to the C code and have it count the bits of
every byte.

e Parameter exchange:
* From Xojo to C lib:
e Address of data
* Length of data
e From C lib to Xojo:

* Result (number of counted bits)



C code skeleton

typedef struct sharedTask {

uintl6_t ident; // must equal 0xB119

uintl6_t ownSize; // must equal sizeof(sharedTask)
privateData internal,;

uint8_t status; // 0: ready, 1l: working, 2: finished
// «.. add your own data here

char *xinputBuf;
uint32_t inputLen;
uint64_t result;

} sharedTask;

typedef struct { // links the sharedTask records into a queue
uintl6_t ident; // must equal OxB117
uintl6_t ownSize; // must equal sizeof(privateData)
struct sharedTask xknext;

} privateData;



C code skeleton

DLL extern boolean helper_createThreads (int threadCountIn)

{
gStop = 0;
gThreads = calloc (threadCountIn, sizeof(gThreads[0]));
gThreadCount = threadCountIn;

for (int n = @; n < gThreadCount; ++n) {
pthread_create (&gThreads[n], NULL, threadRunner, n);
}

return true;



C code skeleton

DLL extern boolean helper_enqueue (sharedTask xtask) {
task—>internal.next = NULL;

// Add the task to the queue.
pthread_mutex_lock(&gInputLock);
if (!gNextTask) {

gNextTask = task;
} else {

gLastTask—>internal.next = task;

I

gLastTask = task;
gPendingTaskCount += 1;
pthread_mutex_unlock(&gInputLock);

// Signal the waiting threads so that one picks up the task
pthread_cond_signal (&gInputCond);

return true;



C code skeleton

static void *threadRunner(void *xthreadNum) {
while (!gStop) {
sharedTask xmyTask;

pthread_mutex_lock (&gInputLock);

// Wait for a new task (added via helper_enqueue)
while (gNextTask == NULL) {

pthread_cond_wait (&gInputCond, &gInputlLock);
¥

// Pick next task from queue
myTask = gNextTask;

gNextTask = myTask—->internal.next;
gPendingTaskCount —-= 1;

pthread_mutex_unlock (&gInputLock);



C code skeleton

myTask—->status = 1;
gBusyTaskCount += 1;

boolean ok = false;

//
// Do the task's work here,
//

ok = true;
// Mark the task finished

myTask—>status = (ok) ? 2 :
gBusyTaskCount —= 1;

using the information in myTask

3;



Xojo code skeleton

SharedTask
Declaration Offset Size

@ ident as UInt16 0 2
@ ownSize as UInt16 2 2
@ internal as InternalData 4 8
@ status as UInt8 12 1
@ filler as String * 3 13 3
@ inputBuf as Ptr 16 4
@ inputLen as UInt32 20 4
@ result as UInt64 24 8
©) 32



Xojo declares

HelpersLib As String

Platform Language Value
@ Windows ¥ Default ¥ C_Helper.dll
@ 0OS X W Default ¥ @executable_path/../[Frameworks/C_Helper.dylib

®

declare function f_ lib HelpersLib alias "helper_initialize" () as Boolean

if not f_ () then
/| something went wrong
break

end if



Class ProcessingTask

Constructor(input as MemoryBlock, userinfo as Variant)

hﬂnput = input // let's keep the MemoryBlock around until we're finished with this task
mUserinfo = userinfo

/| set up internal data

mTaskData.ident = &hB119

mTaskData.ownSize = mTaskData.Size
mTaskData.internal.ident = &hB117
mTaskData.internal.ownSize = mTaskData.internal.Size

/| set up our user data
mTaskData.inputBuf = minput
mTaskData.inputLen = minput.Size
mTaskData.result = O

Start

mTaskData.status =0
C_Helper.Enqueue mTaskData



Using ProcessingTask

call C_Helper.CreateThreads (4)
dim testData as String = TestData

/| set up each task and run a thread on it
for taskNum as Integer =0to 15

mTasks.Append = new ProcessingTask (testData, taskNum)
next

/| now start each task, which in turn passes its data to the helper's threads
for taskNum as Integer = O to mTasks.Ubound

mTasks(taskNum).Start
next

pollTimer.Mode = Timer.ModeMultiple



Polling Task results

if mTasks.Ubound >= 0 then
fori as Integer = O to mTasks.Ubound
dim task as ProcessingTask = mTasks(i)
if task.Status = 2 then
/| finished - we could add new Tasks to mTasks now
end if
next
end if



References

e Sample Code:

e http://files.tempel.org/RB/Threading

* Forum posts about handling pre-emptive threads

e https://forum.xojo.com/49704

* https://forum.xojo.com/20313




