
Using external C code
with pre-emptive

multi-tasking in Xojo

Thomas Tempelmann

MBS Xojo Conference, Munich

September 7, 2018

Challenges
• Xojo cannot run code in multiple threads concurrently, due to lack

of securing the lowest data structures (Objects, includings Strings
and Arrays) accordingly.

• Any parallel processing (on multiple CPU Cores) must be
performed outside Xojo code, e.g. in a library written in C.

Binding with the C code
• On macOS, create a dylib; on Windows a DLL

• The lib exports static C functions

• Add the lib file to the built app using Build Automation

• Link to the functions from Xojo with declares

Threads and Tasks
• The C code sets up a number of pthreads (POSIX Threads)

• Xojo creates Tasks, which are described in Structures. These get
passed to the C code, which adds them to a queue (list).

• Each running Thread waits for Tasks to arrive, and processes one
of them at a time.

• Once a task has been handled by a thread, it sets a flag, which the
Xojo code polls via a Timer or in a Xojo Thread.

Task data structure
• Example: Pass data to the C code and have it count the bits of

every byte.

• Parameter exchange:

• From Xojo to C lib:

•Address of data

• Length of data

• From C lib to Xojo:

•Result (number of counted bits)

C code skeleton
typedef struct sharedTask {
 uint16_t ident; // must equal 0xB119
 uint16_t ownSize; // must equal sizeof(sharedTask)
 privateData internal;
 uint8_t status; // 0: ready, 1: working, 2: finished
 // ... add your own data here
 char *inputBuf;
 uint32_t inputLen;
 uint64_t result;
} sharedTask;

typedef struct { // links the sharedTask records into a queue
 uint16_t ident; // must equal 0xB117
 uint16_t ownSize; // must equal sizeof(privateData)
 struct sharedTask *next;
} privateData;

C code skeleton
DLL extern boolean helper_createThreads (int threadCountIn)
{
 gStop = 0;
 gThreads = calloc (threadCountIn, sizeof(gThreads[0]));
 gThreadCount = threadCountIn;

 for (int n = 0; n < gThreadCount; ++n) {
 pthread_create (&gThreads[n], NULL, threadRunner, n);
 }

 return true;
}

C code skeleton
DLL extern boolean helper_enqueue (sharedTask *task) {
 task->internal.next = NULL;

 // Add the task to the queue.
 pthread_mutex_lock(&gInputLock);
 if (!gNextTask) {
 gNextTask = task;
 } else {
 gLastTask->internal.next = task;
 }
 gLastTask = task;
 gPendingTaskCount += 1;
 pthread_mutex_unlock(&gInputLock);

 // Signal the waiting threads so that one picks up the task
 pthread_cond_signal (&gInputCond);

 return true;
}

C code skeleton
static void *threadRunner(void *threadNum) {
 while (!gStop) {
 sharedTask *myTask;

 pthread_mutex_lock (&gInputLock);

 // Wait for a new task (added via helper_enqueue)
 while (gNextTask == NULL) {
 pthread_cond_wait (&gInputCond, &gInputLock);
 }

 // Pick next task from queue
 myTask = gNextTask;
 gNextTask = myTask->internal.next;
 gPendingTaskCount -= 1;

 pthread_mutex_unlock (&gInputLock);

C code skeleton
 …

 myTask->status = 1;
 gBusyTaskCount += 1;

 boolean ok = false;

 //
 // Do the task's work here, using the information in myTask
 //

 ok = true;

 // Mark the task finished
 myTask->status = (ok) ? 2 : 3;
 gBusyTaskCount -= 1;
 }

Xojo code skeleton

Xojo declares

Class ProcessingTask

Using ProcessingTask

Polling Task results

References
• Sample Code:

• http://files.tempel.org/RB/Threading

• Forum posts about handling pre-emptive threads

• https://forum.xojo.com/49704

• https://forum.xojo.com/20313

